Centrosome and microtubule dynamics during early stages of meiosis in mouse oocytes.

نویسندگان

  • A Can
  • O Semiz
  • O Cinar
چکیده

Centrosomes, major regulatory sites for the microtubule (MT) nucleation, are regulated in a dynamic manner throughout the process of meiotic maturation. Recently, centrosome orientation in mouse oocytes has been demonstrated in metaphase I through metaphase II. However, centrosomal protein expression in concordance with MT polymerization in earlier stages of oocyte maturation from germinal vesicle stage (GV) to prometaphase I still remains unclear. The present study aims to assess the centrosome-microtubule remodelling during the onset of meiosis based on strict criteria of nuclear maturation. Six consecutive stages were determined for scoring the oocytes as unrimmed nucleolus (UR), partially rimmed nucleolus (PR), fully rimmed nucleolus (FR), nuclear lamina dissolution (NLD), disappearance of nucleolus (DON), and chromatin condensation (CC). A centrosomal protein, pericentrin, was found tightly localized adjacent to nuclear lamina in UR, lacking any MT nucleation activity. In concordance with the competency to resume meiosis, an increase in the amount and nucleation capacity of pericentrin is noted. In FR, cytoplasmic MT almost disappeared while de-novo microtubule polymerization was found in small aggregates of pericentrin localized around the nucleus. Towards the end of DON and CC, a sudden burst of pericentrin was noted with an extreme MT nucleation activity in an organized fashion that is essential for the rapid formation of first meiotic spindle. The results show that centrosomes display precisely controlled spatio-temporal changes during the onset of meiotic maturation. Accumulation of centrosomal proteins to a single locus followed by a sequestration to several spots might be evidence of a mechanism by which the proper distribution of centrosomal material during nuclear breakdown and subsequently formation of spindle are regulated in concordance with the nuclear maturation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Centrosome and microtubule dynamics during meiotic progression in the mouse oocyte.

The disposition, function and fate of centrosomes were analysed in mouse oocytes undergoing in vitro meiotic maturation, using multiple-label fluorescence microscopy. Oocytes fixed at various points during meiotic progression were double labeled with either human centrosome-specific antibody, 5051, and anti-tubulin antibodies or 5051 and MPM-2 antibodies in order to evaluate the microtubule nuc...

متن کامل

Distinctions in meiotic spindle structure and assembly during in vitro and in vivo maturation of mouse oocytes.

To better understand the differences in cytoskeletal organization between in vivo (IVO) and in vitro (IVM) matured oocytes, we analyzed remodeling of the centrosome-microtubule complex in IVO and IVM mouse oocytes. Fluorescence imaging revealed dramatic differences in meiotic spindle assembly and organization between these two populations. Metaphase spindles at both meiosis I (M-I) and meiosis ...

متن کامل

Meiotic Regulation of TPX2 Protein Levels Governs Cell Cycle Progression in Mouse Oocytes

Formation of female gametes requires acentriolar spindle assembly during meiosis. Mitotic spindles organize from centrosomes and via local activation of the RanGTPase on chromosomes. Vertebrate oocytes present a RanGTP gradient centred on chromatin at all stages of meiotic maturation. However, this gradient is dispensable for assembly of the first meiotic spindle. To understand this meiosis I p...

متن کامل

P-22: Time Dependent Effect of Post Warming Interval on Microtubule Organization, Meiotic Status, and Parthenogenetic Activation of Vitrified In vitro Matured Sheep Oocytes

Background: It is a common practice to rest vitrified-warmed matured oocytes for 1-3 hours, as a treatment to recover spindle and cytoskeleton, before commencing a further treatment. Vitrified-warmed matured oocytes, however, are very sensitive and may resume meiosis spontaneously during this recommended rest time. Therefore, the aim of this study was to assess spindle and chromosome status as ...

متن کامل

Haspin kinase regulates microtubule-organizing center clustering and stability through Aurora kinase C in mouse oocytes.

Meiotic oocytes lack classic centrosomes and, therefore, bipolar spindle assembly depends on clustering of acentriolar microtubule-organizing centers (MTOCs) into two poles. However, the molecular mechanism regulating MTOC assembly into two poles is not fully understood. The kinase haspin (also known as GSG2) is required to regulate Aurora kinase C (AURKC) localization at chromosomes during mei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular human reproduction

دوره 9 12  شماره 

صفحات  -

تاریخ انتشار 2003